Background. Recent oncolytic virus clinical studies have shown safety and implied anti-tumor activity. However, a major obstacle to this approach has been the rapid oncolytic virus replication by the patient’s immune system. We hypothesized that oncolytic viruses would be protect and delivered efficiently to tumor sites by autologous adipose stromal vascular fraction (SVF) cells. Effective virus protection by adipose derived cells has been confirmed in preclinical studies. Here, we report the results of a first-in-man trial to determine the safety and feasibility of this approach in patients with advanced solid tumors and AML.

Methods. In this single-arm, open-label safety study, 24 patients with advanced solid tumors and 2 patients with AML were treated with a single administration of the oncolytic virus ACAM2000 (vaccinia) delivered by SVF cells. Patients received ACAM2000/SVF by intravenous application, or by a combination of intravenous and intratumoral/intra-peritoneal injections. The dose for ACAM2000 was between 1.4 x 10^6 to 1.8 x 10^9 pfu incubated with same number of SVF cells. The primary endpoint was safety/feasibility by incidence of dose-limiting toxicity. Secondary endpoints included evaluations of overall survival and reduction of anti-tumor and anti-vaccinia immune responses. Blood samples were collected at multiple time points for quantifying vaccinia virus DNA in peripheral blood by qPCR. In addition, levels of 30 plasma cytokines and the effects on activated T cells, Tregs, memory T cells, NK cells, and MDSC were analyzed.

Results. No serious toxicities (≥ grade 2) were reported. Eight of the 26 subjects reported an AE self-limiting skin lesions, lasting 7 to 18 days – an expected reaction to ACAM2000. No infusion related AEs were reported. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients immediately following treatment. Interestinlly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication, possibly at tumor sites. This viral DNA reappearance correlated with longer survival of these patients. No major increase in cytokine levels was observed in any of the patients. No correlation between cytokine levels and pox lesions was noted. Flow cytometry showed gradual changes suggesting improved immune cell activation status. Tumor size reduction was documented in several patients.

Conclusions. Treatment with ACAM2000/SVF in patients with advanced solid tumors and AML is safe and well tolerated, with clear antitumor effects in several patients. No correlation between cytokine levels and pox lesions was noted. Flow cytometry showed gradual changes suggesting improved immune cell activation status. These promising initial clinical results merit further investigation of therapeutic utility.

Methods - Open-label, non-randomized dose-escalation trial - Mini-liposuction procedure was performed to isolate up to 100 milliliters of adipose tissue 14 – 21 days after treatment; - The lyophilized ACAM2000 vaccine was reconstituted, added to a syringe immediately before application; - In patients treated with SVF, a syringe containing SVF cells and incubated at 37°C for 15 minutes, 1 hour on a rotator was used; - Viral DNA was detected in all patients immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication, possibly at tumor sites. This viral DNA reappearance correlated with longer survival of these patients. No major increase in cytokine levels was observed in any of the patients. No correlation between cytokine levels and pox lesions was noted. Flow cytometry showed gradual changes suggesting improved immune cell activation status. Tumor size reduction was documented in several patients.

Conclusions. Treatment with ACAM2000/SVF in patients with advanced solid tumors and AML is safe and well tolerated, with clear antitumor effects in several patients. No correlation between cytokine levels and pox lesions was noted. Flow cytometry showed gradual changes suggesting improved immune cell activation status. These promising initial clinical results merit further investigation of therapeutic utility.